
Research Institute for Advanced Computer Science
NASA Ames Research Center

///-,._/

g,'f
An Application for Multi-person Task Synchronization

Robert L. Brown

Dee Doyle

o.-$/51
UncldS

004304b

RIACS Technical Report 90.24

NASA Cooperative Agreement Number NCC2-387

i¢"

An Application for Multi-person Task Synchronization

Robert L. Brown

Dee Doyle

JULY 1990

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 311, Columbia, MD 21044, (301) 730-2656.

The work reported on herein was supported by Cooperative Agreement Number NCC2-387 between the
National Aeronautics and Space Administration and the Universities Space Research Association.

1. Introduction

This paper describes a project to investigate computer applications that will enable a

group of people to synchronize their actions when following a pre-defined task sequence.

We assume that the people involved only have computer workstations available to them for

communication. Hence, our approach it to study how the computer can be used to help a

group remain synchronized.

It is our purpose to design and develop a series of applications that we can use as vehi-

cles for experimentation. The series will incorporate increasingly more powerful capabilities,

building on what we learn from previous versions.

An example of how this technique can be used for a remote coaching capability is ex-

plained in a report describing an experiment that simulated a Life Sciences experiment on-

board Space Station Freedom, with a ground-based Principal Investigator providing the ex-

pertise by coaching the on-orbit Mission Specialist. For more information, see [Haines89a].

2. Background

When a group of people work together in tight collaboration on a pre-defined task, such

as repairing a complicated device, performing a laboratory experiment, or preparing an aircraft

for flight, the task can usually be described as a partial ordered graph of subtasks, where

each subtask is an indivisible unit of work typically performed by a single individual. Figure

1 shows such a partial ordering. The graph is typically represented as a written set of in-

structions, as in a checklist or repair manual, or as a chart.

When the group of people are working in close physical proximity, synchronization is

typically simplified by the use of verbal communication, or a task supervisor overseeing the

progress. In the former case, the task graph can be shared, or replicated for each member. In

the latter, typically only the supervisor has the task graph and gives instructions or orders to

each subordinate member. However, when the group is geographically dispersed, such tight

communicationor supervisionis not assimple. Radiolinks canbeusedfor verbalandvideo

communication,andthetaskgraphis representedonpaperandavailableto eachmemberof

thegroup. Voice andvideocanbeusedin thesupervisormodel,aswell, with thesupervisor

parcellingout instructionsin thecorrectorder.

Thoughaudionetworksarecommonplace(thetelephonesystem),personalvideo net-

worksarenot commonlyavailable. Digital computernetworks,however,havebecomemore

andmoreavailableto thesciencecommunity,andpredictionsarethat thetrendwill continue

for manyyears. Hence,weareinvestigatinghow thesenetworks,andtheworkstationspeo-

ple useto interfaceto them,canbeusedto supportcollaborativetasksequencing.

Computerworkstationshavedemonstratedthemselvesasusefulin avarietyof collabo-

rative tasks. Computerelectronicmail canbeusedasacollaborationtechnique.A groupof

peopleworking togethercanstayin closecontactwith eachotherandexchangedocuments.

The granularityof interactionis too large,however,for electronicmail to beusedfor tasks

whosesubtasksaremuchfiner grainedthantheexchanges.

Oneareaof pastwork thatis particularlyrelevantto thiswork is in multimediaconfer-

enceing.[continue on with MMCONF, Diamond, SLATE discussion].

BEGIN "

People: A, B

Subtasks

Figure 1. Partial Ordering of Subtasks

3. Possbilities for Computer-supported Task Sequencing

The remote coaching facility uses a simple sequencer in which the subtasks form a total

ordering. Such task graphs can be called a "check list" because each subtask must be com-

peted ("checked off") before then next one begins. There is no possibility for parallelism 1.

Complete seriality is not inherent to task sequencing; procedures often provide for si-

multaneous activities. A computer-support task synchronizer that supports simulteneous

activities can also support completely serial activities by simply providing it with a serial

specification. However, we do not yet understand all the issues related to task synchroniza-

tion supporting simultaneous activities, or if such has practical application for dispersed col-

laborators. Hence, we chose to study only the completely serial case at first.

4. Design of the Project

We chose to approach this project incrementally. Because of the experiences gained in

the Haines remote coaching study, we chose to mimic the software developed therein as our

starting point. However, the Haines study software is developed solely for Apple Macin-

toshes and is written using the HyperCard application. Our computing environment relies on

open systems, and our software platform includes UNIX, the X Window System, and the Mo-

tif toolkit. We did not restrict ourselves to any particular hardware platform.

We call the experimental steps in our project "phases," where each phase consists of

a design of a tool and its implementation. Each successive phase will add functionality

based on what we learned from the previous phase. The first phase is called "phase zero"

because it directly emulates the software from the remote coaching facility and does not pro-

vide any new functionality. We expect a high degree of code sharing between phases, but

would not hesitate to begin anew at any step.

1 This does not strictly apply to the remote coaching software, which contained the possibili-

ty of a subtask requiring the user to gather several items in any order from a locker.

5. Phase Zero

As metioned, the phase zero software we designed to closely mimick the behavior of

the checklist application in the remote coaching application. However, we sought to develop

the application using open systems software technology and hence, using the X Window

System from Project Athena at MIT. We succeeded in this goal and have a configurable dis-

tributed checklist application that is transportable across many workstation platforms. We

have demonstrated this code by creating working displays on Sun Microsystems worksta-

tions, a Stardent Titan-1000, an Apple Macintosh II, and a NCD X-station, all at the same

time.

5.1. Design

The design goal of phase zero was to allow the specification of the checklist task as a

simple text file, that can be created using any standard text editor. We designed and imple-

mented a straightforward textual language to describe the checklist. A grammar in BNF no-

tation is presented in Figure 1. The application itself is composed of two major phases: input

processing and interpretation.

The first phase is solely responsible for converting an external representation of the

checklist into an internal representation, and building the tables describing the location of

each partcipant at the same time. Because the participants can move about, the specification

of their names and locations can only be known at runtime. Hence, that information is encod-

ed as a part of the checklist specification. Arguably, the name & location information should

be separated from the checklist description itself, but standard UNIX tools allow for this sep-

aration, and subsequent combination before the invocation of the checklist application.

5.2. Implementation

The distributed checklist, or DCL, application is constructed as a single process that si-

multaneously manages several displays, one per participant. This capability takes advan-

tageof theability of theX Window Systemto supportremotedisplays,in fact, theDCL ap-

plicationcodeneednotrunon thesamedisplayworkstationasanyof thedisplays.

Critical to usefulnessof adistributedchecklistis keepingall participantsawareof the

stateof theprocedure.Hence,muchof theactivity of theapplicationconcernsassuringthat

all displaysreflect thesamestate.

Figures2-8showvariousscreenimagesfrom theapplication.Theproceduredisplayed

is onetakenfrom theremotecoachingexperiment.

6. Conclusions and Future Work

The usefulness of the distributed checklist has been demonstrated by its application in

a remote coaching experiment. The suitability of the X Window System for this type of appli-

cation is demonstrated by the ease with which the application was built. Without the use of

a windowing system based on a server/client model, communication among the software driv-

ing the individual display would have to be explicitly coded into the application. This was the

case the the HyperCard-based implementation on the Apple Macintosh systems. By allow-

ing a single host to conrol the checklist, synchronizing the displays was simplified.

In the next generation of task synchronization application, if we pursue this project, will

enable separate activities to be performed in parallel by different participants. We do not,

however, have a target application for st,ch a tool and will have to creat one in order to vali-

date the approach.

7. Appendix

The following five pages show screen images from the distributed checklist application.

The first page shows the initial state: Step 1 is in the middle of the list of steps and "Doyle"

is the person listed as the authority for advancing the state. The second image shows the

state of the screen for the other participant, "Vogelsong." The third screen shows the

checklistof itemsthatmustbecollectedinto thegloveboxvestibule.Theitemson thelist

canbecheckedoff in anyorder. Thefourthscreenshowswhathappenswhensomeoneother

thantheauthoratativepersonselectsto advancethelist: adialog boxasksfor confirmation.

Thefinal screenshowsthechecklistapplicationin oneof thelateststages;thepreviousin-

structionis displayedaswell andthecurrentandnext instruction.

o

S
O

o

y_] ..
ON1

i °°

: " i

,i

m

,m

mm
B

IA

m

m

m

t
m

.i

m

_q

qw_

4_

0

S
o

Q_

i_l cs
ima _

•" _
r_

o

rA_

O c_
o

..
l_q ,,

C_ r/_

v

I.

t_
m

IZl
.°

f_

N
m
J
m
m

oJ

I

m
im

_4

._1

o
cJ

o

o_

Q_

ID

o

0 0

o

_ 0

_-1 .. O

o N , M
m ,

..... i

i

l
i

m
[[:

,m
u

o

o

o

rm_

o • o

o o

4a

0 o° U

°°

_ i _.

U

"0

0

X

¢..m.-

0

•1", ._ L L -'_

I_ r_ W I_ O C] 13 O 13 O

N

U

0

E
e)

,aE

!

